已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.
(Ⅰ)已知双曲线C与双曲线有相同的渐近线,且一条准线为,求双曲线C的方程;(Ⅱ)已知圆截轴所得弦长为6,圆心在直线上,并与轴相切,求该圆的方程.
已知直线:,直线:.若,求的取值范围.
已知椭圆,过点(m,0)作圆的切线交椭圆G于A,B两点.(1)求椭圆G的焦点坐标和离心率;(2)将表示为m的函数,并求的最大值.
如图,已知椭圆(a>b>0)的离心率,过点 和的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点,若直线与椭圆交于、两 点.问:是否存在的值,使以为直径的圆过点?请说明理由.
已知函数,是的一个极值点.(1)求的单调递增区间;(2)若当时,恒成立,求实数的取值范围.