已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.
如图, 在三棱柱-中,侧棱垂直于底面,=3,=4,=5,=4点D是的中点, (1)求证: //平面; (2)求证:⊥平面。
已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程
已知函数是函数的极值点,其中是自然对数的底数。 (I)求实数a的值; (II)直线同时满足: ① 是函数的图象在点处的切线 , ② 与函数的图象相切于点,求实数b的取值范围
椭圆C1:的左、右焦点分别为F1、F2,F2也是抛物线 C2:的焦点,点M为C1与C2在第一象限的交点,且 (I)求C1的方程; (II)直线l∥OM(为坐标原点),且与C1交于A、B两点,若·=0,求直线l的方程
已知实数,设P:函数在R上单调递减, Q:关于的一元二次方程有两个不相等的实数根, 如果命题“”为真命题,命题“”为假命题,求实数c的取值范围.