(本小题满分14分) 已知函数,(e为自然对数的底数) (Ⅰ)当a=1时,求函数f(x)的单调区间; (Ⅱ)若函数f(x)在上无零点,求a的最小值; (III)若对任意给定的,在上总存在两个不同的,使得成立,求a的取值范围.
(本题12分)如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
(本题12分)已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切.(Ⅰ)求椭圆的离心率;(Ⅱ)若的最大值为49,求椭圆C的方程.
(本题12分) 如图的几何体中,平面,平面,△为等边三角形, ,为的中点. (1)求证:平面; (2)求证:平面平面; (3)求此几何体的体积。
(本题12分)已知数列的前项和满足,等差数列满足,。(1)求数列、的通项公式;(2)设,数列的前项和为,问>的最小正整数是多少?
(本题10分)设三角形的内角的对边分别为 ,.(1)求边的长; (2)求角的大小。