一射击测试每人射击二次,甲每击中目标一次记10分,没有击中记0分,每次击中目标的概率为;乙每击中目标一次记20分,没有击中记0分,每次击中目标的概率为.(Ⅰ)求甲得10分的概率;(Ⅱ)求甲乙两人得分相同的概率.
已知关于的方程C:.(1)若方程表示圆,求的取值范围;(2)若圆与直线:相交于两点,且=,求的值.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由。
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点. (1)求异面直线PA与DE所成角的大小;(2)求二面角B—DE—C的平面角的余弦值;(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
如图, 在直三棱柱中,,,点是的中点,(1)求证:;(2)求证:;(3)求直线与平面所成角的正切值.
已知关于的方程.(1)若方程表示圆,求实数的取值范围 ;(2)若圆与直线相交于两点,且,求的值