从5名男生和4名女生中选出4人去参加辩论比赛,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲和女生中的乙必须在内,有多少种选法?(Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?
(本题14分)已知直线:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A、B。(1)求实数k的取值范围;(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若荐在,求出k的值。若不存在,说明理由。
(本题12分)某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如下表:
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
(本题12分)在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC=CD=1。(1)求证:平面ACD⊥平面ABC;(2)求二面角C-AB-D的大小。
(本题12分)已知命题p:|4-x|≤6,q:x2-2x+1- a2≥0(a>0),若非p是q的充分不必要条件,求a的取值范围。
(本题12分)在锐角△ABC中,a,b,c分别为角A、B、C所对的边,且a=2csinA,(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值。