使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。己知函数 (m为常数)。(1)当=0时,求该函数的零点;(2)证明:无论取何值,该函数总有两个零点;(3)设函数的两个零点分别为和,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。
阅读下面材料: 小腾遇到这样一个问题:如图1,在中,点在线段上,,,,,求的长. 小腾发现,过点作,交的延长线于点,通过构造,经过推理和计算能够使问题得到解决(如图2). 请回答:的度数为,的长为. 参考小腾思考问题的方法,解决问题: 如图3,在四边形中,,,,与交于点,,,求的长.
如图,是的直径,是的中点,的切线交的延长线于点,是的中点,的延长线交切线于点,交于点,连接. (1)求证:; (2)若,求的长.
根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题: (1)直接写出扇形统计图中的值; (2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本; (3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.
如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,. (1)求证:四边形是菱形; (2)若,,,求的值.
列方程或方程组解应用题: 小马自驾私家车从地到地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多元,求新购买的纯电动汽车每行驶1千米所需的电费.