已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.(I)求椭圆的方程;(II)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
已知定义在正实数集上的函数,,其中. 设两曲线,有公共点,且在该点处的切线相同.(I)用表示;(II)求证:().
已知向量(Ⅰ)当时,求函数的值域;(Ⅱ)若的值.
已知集合A=,.(Ⅰ)当a=2时,求AB;(Ⅱ)求使BA的实数a的取值范围.
(本题满分12分)已知是定义域为[-3,3]的函数,并且设,,其中常数c为实数.(1)求和的定义域;(2)如果和两个函数的定义域的交集为非空集合,求c的取值范围;(3)当在其定义域内是奇函数,又是增函数时,求使的自变量的取值范围.
设函数为奇函数,导函数的最小值为-12,函数的图象在点P处的切线与直线垂直.(1)求a,b,c的值;(2)求的各个单调区间,并求在[-1, 3]时的最大值和最小值.