已知:如图,在正方形ABCD中,E、F分别是AD、CD的中点.(1)线段AF与BE有何关系?说明理由;(2)延长AF、BC交于点H,则B、D、G、H这四个点是否在同一个圆上?说明理由.
在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位: m ) ,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中 a 的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为 1 . 65 m 的运动员能否进入复赛.
解不等式 x + 2 ⩽ 6 , ① 3 x - 2 ⩾ 2 x , ② ,请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为 .
综合与探究
如图,抛物线经过点,两点,与轴交于点,点是抛物线上一个动点,设点的横坐标为.连接,,,.
(1)求抛物线的函数表达式;
(2)的面积等于的面积的时,求的值;
(3)在(2)的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
综合与实践
动手操作:
第一步:如图1,正方形纸片沿对角线所在的直线折叠,展开铺平.在沿过点的直线折叠,使点,点都落在对角线上.此时,点与点重合,记为点,且点,点,点三点在同一条直线上,折痕分别为,.如图2.
第二步:再沿所在的直线折叠,与重合,得到图3.
第三步:在图3的基础上继续折叠,使点与点重合,如图4,展开铺平,连接,,,.如图5,图中的虚线为折痕.
问题解决:
(1)在图5中,的度数是 ,的值是 .
(2)在图5中,请判断四边形的形状,并说明理由;
(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .
阅读以下材料,并按要求完成相应的任务:
莱昂哈德欧拉是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在中,和分别为外接圆和内切圆的半径,和分别为其中外心和内心,则.
如图1,和分别是的外接圆和内切圆,与相切分于点,设的半径为,的半径为,外心(三角形三边垂直平分线的交点)与内心(三角形三条角平分线的交点)之间的距离,则有.
下面是该定理的证明过程(部分)
延长交于点,过点作的直径,连接,.
,(同弧所对的圆周角相等).
.,,①
如图2,在图1(隐去,的基础上作的直径,连接,,,.
是的直径,所以.
与相切于点,所以,
.
(同弧所对的圆周角相等),
,
②
任务:(1)观察发现:, (用含,的代数式表示);
(2)请判断和的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若的外接圆的半径为,内切圆的半径为,则的外心与内心之间的距离为 .