(已知.(1)判断并证明的奇偶性; (2)判断并证明的单调性;(3)若对任意恒成立,求的取值范围.
掷两枚骰子,求所得的点数之和为6的概率.
设f(x)=x3+3x2+px, g(x)=x3+qx2+r,且y=f(x)与y=g(x)的图象关于点(0,1)对称.(1)求p、q、r的值;(2)若函数g(x)在区间(0,m)上递减,求m的取值范围;(3)若函数g(x)在区间 上的最大值为2,求n的取值范围.
知函数.(1)求函数的反函数;(2)若时,不等式恒成立,试求实数的范围.
设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.