已知定义在上的函数是偶函数,且时, .(1)当时,求解析式;(2)当,求取值的集合.(3)当,函数的值域为,求满足的条件。
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元) (I)将y表示为x的函数; (II)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
已知圆C:,直线: (I)证明:不论m取什么实数,直线与圆恒交于两点; (II)求直线被圆截得的弦长最小时的方程,并求此时的弦长
如图,在棱长为2的正方体中,分别是和的中点,求异面直线与所成角的正切值
解关于的不等式,其中
在平面直角坐标系XOY中,A,B分别为直线x+y=2与x、y轴的交点,C为AB的中点. 若抛物线(p>0)过点C,求焦点F到直线AB的距离.