抛物线的准线与轴交于,焦点为,若椭圆以、为焦点、且离心率为。(1)当时求椭圆的方程;(2)若抛物线与直线及轴所围成的图形的面积为,求抛物线和直线的方程
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C);当正方体上底面出现的数字是3,质点P前进三步(如由A到).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.求: (Ⅰ)需要四次投掷,点P恰返回到A点的概率; (Ⅱ)点P恰好返回到A点的概率.
某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走①号公路堵车的概率为,不堵车的概率为;汽车走②号公路堵车的概率为,不堵车的概率为.由于客观原因甲、乙两辆汽车走①号公路,丙汽车走②号公路,且三辆车是否堵车相互之间没有影响.(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求汽车走公路②堵车的概率;(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
甲、乙两个箱子中装有大小相同的小球,甲箱中有2个红球和2个黑球,乙箱中装有2个黑球和3个红球,现从甲箱和乙箱中各取一个小球并且交换。(1)求交换后甲箱中刚好有两个黑球的概率。(2)设交换后甲箱中黑球的个数为,求的分布列和数学期望。
已知参赛号码为1~4号的四名射箭运动员参加射箭比赛。(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;(2)记1号,2号射箭运动员,射箭的环数为(所有取值为0,1,2,3...,10)。 根据教练员提供的资料,其概率分布如下表:
① 若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率;② 判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
某种家用电器每台的销售利润与该电器的无故障使用时间有关,每台这种家用电器若无故障使用时间不超过一年,则销售利润为0元,若无故障使用时间超过一年不超过三年,则销售利润为100元;若无故障使用时间超过三年,则销售利润为200元。已知每台该种电器的无故障使用时间不超过一年的概率为无故障使用时间超过一年不超过三年的概率为(I)求销售两台这种家用电器的销售利润总和为400元的概率;(II)求销售三台这种家用电器的销售利润总和为300元的概率;