解下列方程:
如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G. (1)求证:EF=EG; (2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由: (3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.
如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点. (1)求一次函数与反比例函数的解析式; (2)根据所给条件,请直接写出不等式kx+b>的解集; (3)过点B作BC⊥x轴,垂足为C,求S△ABC.
如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=,AC=. (1)求⊙O的半径: (2)求图中阴影部分的面枳.
如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线. (1)求证:AC=AD; (2)若∠B=60°,求证:四边形ABCD是菱形.
去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?