图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象。根据图象回答问题:(1)在这个变化过程中,自变量是 ,因变量是 。(2)9时,10时,12时所走的路程分别是多少?(3)他休息了多长时间?(4)他从休息后直至到达目的地这段时间的平均速度是多少?
已知:在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,求梯形的高
已知点A、B分别是轴、轴上的动点,点C、D是某个函数图像上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。例如:如图,正方形ABCD是一次函数图像的其中一个伴侣正方形 (1)若某函数是一次函数,求它的图像的所有伴侣正方形的边长; (2)若某函数是反比例函数,他的图像的伴侣正方形为ABCD,点D(2,m)(m <2)在反比例函数图像上,求m的值及反比例函数解析式; (3)若某函数是二次函数,它的图像的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标,写出符合题意的其中一条抛物线解析式,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?。(本小题只需直接写出答案)
某地震救援队探测出某建筑物废墟下方点处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度. (结果精确到0.1米,参考数据:,)
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C、 (1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立 平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连结AD、CD. (2)请在(1)的基础上,完成下列填空: ①写出点的坐标:C、D; ②⊙D的半径= (结果保留根号); ③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为; (结果保留) ④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由
小明手中有4张背面相同的扑克牌:红桃A、红桃2、黑桃A、黑桃2。先将4张牌背面朝上洗匀,再让小刚抽牌。 (1)小刚从中任意抽取一张扑克牌,抽到红桃的概率为。 (2)小刚从中任意抽取两张扑克牌。游戏规则规定:小刚抽到的两张牌是一红、一黑,则小刚胜,否则小明胜,问该游戏对双方是否公平。(利用树状图或列表说明)