已知三元一次方程组(1)求该方程组的解;(2)若该方程组的解使ax+2y+z<0成立,求整数a的最大值.
如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
如图所示,E是正方形ABCD的边AB上的动点,正方形的边长为4, EF⊥DE交BC于点F. (1)求证:△ADE ∽△BEF ;(2)AE=x,BF=y.当x取什么值时,y有最大值? 并求出这个最大值;(3)已知D、C 、F、E四点在同一个圆上,连接CE、DF,若sin∠CEF =,求此圆直径.
)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙0的切线;(2)如果⊙0的半径为9,sin∠ADE=,求AE的长.
一块直角三角形木版的一条直角边AB为3m,面积为6,要把它加工成一个面积最大的正方形桌面,小明打算按图①进行加工,小华准备按图②进行裁料,他们谁的加工方案符合要求? 图① 图②
(10分) 如图,已知二次函数y=ax2+bx+c的图像过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图像与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.