如图,是一个长方形分成大小不等的6个小正方形,已知中间的最小的正方形的边长为1厘米,求这个长方形的面积解:设正方形A的边长为x厘米,则正方形B的边长为_______ 厘米,正方形C的边长为_______ 厘米正方形D的边长为_______ 厘米,正方形E的边长为_______ 厘米。由题意可得方程:解得 x= 答:长方形的面积为________ 平方厘米。
(1)计算:; (2)化简:a(3+a)﹣3(a+2).
如图,在等腰梯形 A B C D 中, A B ∥ C D ,点 M 是 A B 的中点. 求证: △ A D M ≌ △ B C M .
如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形” (1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个 三角形 (2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标; (3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
如图,二次函数的图象经过△AOB的三个顶点,其中A(﹣1,m),B(n,n) (1)求A、B的坐标; (2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形. ①这样的点C有几个? ②能否将抛物线平移后经过A、C两点,若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.
如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D (1)求证:AP=AC; (2)若AC=3,求PC的长.