某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.
设函数.(Ⅰ) 若函数在上为增函数, 求实数的取值范围;(Ⅱ) 求证:当且时,.
有一块边长为4米的正方形钢板,现对其进行切割,焊接成一个长方体无盖容器(切、焊损耗忽略不计),有人用数学知识作了如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成长方体。(Ⅰ)求这种切割、焊接而成的长方体的最大容积.(Ⅱ)请问:能重新设计,使所得长方体的容器的容积吗?若能、给出你的一种设计方案。
已知a为实数,x=1是函数的一个极值点。(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;(Ⅱ)设函数,对于任意和,有不等式恒成立,求实数的取值范围.
设△ABC的内角A,B,C所对的边分别为a,b,c且.(Ⅰ)求角A的大小;(Ⅱ)若a=1,求△ABC的周长的取值范围.
已函数是定义在上的奇函数,在上时(Ⅰ)求函数的解析式;(Ⅱ)解不等式.