(本题共12分)据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量(升)与行驶速度(千米∕时)之间有如下函数关系:。已知甲、乙两地相距100千米。(I)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
已知向量, (1)求的最大值和最小值; (2)若,求k的取值范围。
在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且, (1)若c2=a2+b2—ab,求角A、B、C的大小; (2)已知向量的取值范围。
已知等差数列{an}中,a3=-4,a1+a10=2, (1)求数列{an}的通项公式; (2)若数列{bn}满足an=log3bn,设Tn=b1·b2……bn,当n为何值时,Tn>1。
设函数是奇函数(a,b,c都是整数),且, (1)求a,b,c的值; (2)当x<0,的单调性如何?用单调性定义证明你的结论。
已知, (1)求的值; (2)求β。