(本小题满分14分) 已知R,函数(x∈R).(1)当时,求函数f(x)的单调递增区间;(2)函数f(x)是否能在R上单调递减,若能,求出的取值范围;若不能,请说明理由;(3)若函数f(x)在上单调递增,求的取值范围.
已知:两条异面直线a、b所成的角为θ,它们的公垂线段AA1的长度为d.在直线a、b上分别取点E、F,设A1E=m,AF=n.求证:EF=.
已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=.求椭圆的方程.
设a>0,a≠1,解关于x的不等式
如图,在三棱台A1B1C1-ABC中,已知A1A⊥底面ABC,A1A= A1B1= B1C1=a,B1B⊥BC,且B1B和底面ABC所成的角45º,求这个棱台的体积.
设{an}是等差数列,bn=.已知b1+b2+b3=, b1b2b3=.求等差数列的通项an.