(本小题满分13分) 已知命题p:x∈A={x|a-1<x<a+1,x∈R},命题q:x∈B={x|x2-4x+3≥0}. (1)或A∩B=∅,A∪B=R,求实数a(2)若是p的必要条件,求实数a.
设函数,,函数的图象与x轴的交点也在函数的图象上,且在此点有公切线. (1)求、的值;(2)对任意的大小.
已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。
(本小题满分14分)已知函数,其中是的导函数。 (1)若在处的导数为4,求实数的值;(2)对满足的一切的值,都有,求实数的取值范围;(3)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点
设定义在[0,2]上的函数满足下列条件:①对于,总有,且,;②对于,若,则.证明:(1)();(2)时,.
在数列中,,是给定的非零整数,.(1)若,,求;(2)证明:从中一定可以选取无穷多项组成两个不同的常数数列.