在极坐标系中,过曲线L:(>0)外的一点A(2,)(其中tanθ=2,θ为锐角)作平行于θ=()的直线与曲线L分别交于B、C。(1)写出曲线L和直线的普通方程(以极点为原点,极轴为x轴的正半轴建系);(2)若︱AB︱、︱BC︱、︱AC︱成等比数列,求的值。
已知是方程的一个根(为实数).(1)求的值;(2)试说明也是方程的根.
某车间加工零件的数量与加工时间的统计数据如表:
现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )A.112分钟 B.102分钟 C.94分钟 D.84分钟
已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.
请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,在上是被切去的等腰直角三角形斜边的两个端点,设.(1)若广告商要求包装盒侧面积最大,试问应取何值?(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
已知为偶函数,曲线过点, .(1)若曲线有斜率为0的切线,求实数的取值范围;(2)若当时函数取得极值,确定的单调区间.