请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,在上是被切去的等腰直角三角形斜边的两个端点,设.(1)若广告商要求包装盒侧面积最大,试问应取何值?(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别是、,直线与曲线相交于、两点,射线与曲线相交于点,射线与曲线相交于点,求的值.
如图:是⊙的直径,是弧的中点,⊥,垂足为,交于点.(1)求证:=;(2)若=4,⊙的半径为6,求的长.
已知(1)若,求的极大值点;(2)若且存在单调递减区间,求的取值范围.
已知椭圆过点,且离心率为.斜率为的直线与椭圆交于A、B两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求△的面积.
在某次体检中,有6位同学的平均体重为65公斤.用表示编号为的同学的体重,且前5位同学的体重如下:
(1)求第6位同学的体重及这6位同学体重的标准差;(2)从前5位同学中随机地选2位同学,求恰有1位同学的体重在区间中的概率.