(本小题8分)一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于7分的取法有多少种?
如图,在四棱锥中,底面是且边长为的菱形,侧面是等边三角形,且平面⊥底面,为的中点. (1)求证:PD; (2)求 点G到平面PAB的距离。
已知等差数列的前项和满足,. (1)求的通项公式; (2)求数列的前项和.
已知数列中,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,数列的前n项和为, 若不等式对一切恒成立,求的取值范围.
在锐角△ABC中,分别为∠A、∠B、∠C所对的边,且 (1)确定∠C的大小; (2)若c=,求△ABC周长的取值范围.
各项均不相等的等差数列的前四项的和为,且成等比数列. (1)求数列的通项公式与前n项和; (2)记为数列的前n项和,求