从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)列出频率分布表;(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
某工厂计划生产A.B两种涂料,生产A种涂料1t需要甲种原料 1t.乙种原料2t,可获利润3千元;生产B种涂料1t需要甲种原料2t,乙种原料1t, 可获利润2千元,又知该工厂甲种原料的用量不超过400t,乙种原料的用量不超过500t, 问如何安排生产才能获得最大利润?(注:t表示重量单位“吨”)
如果方程表示一个圆, (1)求的取值范围; (2)当m=0时的圆与直线相交,求直线的倾斜角的取值范围.
设集合A=<,集合B=>,若,求实数的取值范围.
已知两条直线与的交点为P,直 线的方程为:. (1)求过点P且与平行的直线方程; (2)求过点P且与垂直的直线方程.
定义在R上的单调函数f(x),存在实数,使得对于任意, 都有:恒成立. (Ⅰ)求的值; (Ⅱ)若,且对任意正整数n,有,又数列满足,求的通项公式.