某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组;第二组……第五组.下图是按上述分组方法得到的频率分布直方图. (I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(II)设表示该班某两位同学的百米测试成绩,且已知求事件的概率.
某班共有36名学生,其中有班干部6名,现从36名同学中任选2名代表参加某次活动,求: (1)恰有1名班干部当选代表的概率; (2)至少有1名班干部当选代表的概率; (3)已知36名学生中男生比女生多,若选得同性代表的概率等于,则男生比女生多几人?
已知函数,.(1)是否存在实数,使不等式对于恒成立,并说明理由;(2)若至少存在一个实数,使不等式成立,求实数的取值范围.
如图,在三棱柱中,侧棱垂直于底面,,,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.
如图,四棱锥中,底面为矩形,平面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求到平面的距离.
已知命题:函数的值域为,命题:函数是上的减函数.若或为真命题,且为假命题,则实数的取值范围是什么?