(本小题满分12分)如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.(Ⅰ)证明:直线与直线的交点在椭圆上;(Ⅱ)若过点的直线交椭圆于两点,为关于轴的对称点(不共线),问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.
经过双曲线x2-=1的左焦点F1作倾斜角为的弦AB,求: (1)|AB|; (2)△F2AB的周长(F2为右焦点).
已知抛物线y2=x上存在两点关于直线l:y=k(x-1)+1对称,求实数k的取值范围.
给定直线l:y=2x-16,抛物线C:y2=ax(a>0). (1)当抛物线C的焦点在直线l上时,确定抛物线C的方程; (2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标ya=8,△ABC的重心恰在抛物线C的焦点上,求直线BC的方程.
顶点在原点,焦点在x轴上,且截直线2x-y+1=0所得弦长为,求抛物线方程.
已知抛物线顶点在原点,焦点在y轴上,抛物线上一点A到焦点F的距离为5,点A纵坐标为-3,求点A的横坐标及抛物线方程.