设为实数,函数. 、(1)若,求的取值范围;(2)求的最小值(3)设函数,直接写出(不需给出演算步骤)不等式的解集.
已知椭圆E的中心在坐标原点O,两个焦点分别为A(﹣1,0),B(1,0),一个顶点为H(2,0).(1)求椭圆E的标准方程;(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.
已知椭圆的长轴长是短轴长的2倍,且过点A(2,﹣6)求椭圆的标准方程和离心率.
求椭圆+y2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.
已知命题p:x1和x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[﹣1,1]恒成立;命题q:不等式ax2+2x﹣1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.
已知命题p:1∈{x|x2<a};q:2∈{x|x2<a}(1)若“p∨q”为真命题,求实数a的取值范围;(2)若“p∧q”为真命题,求实数a的取值范围.