小明准备节约一些储存起来,他已存有60元,从2012年元月份起每个月存15元;小亮以前没存钱,听到小明在存零用钱,表示也从2012年元月份起每个月存25元.(1)试写出小明的存款总数(元)与从2012年元月份起的月数之间的函数关系式以及小亮的存款总数(元)与月数之间的函数关系式.(2)从第几个月开始小亮的存款数可以超过小明?
【改编】如图,己知:反比例函数的图象与一次函数y=mx+b的图象交于点A(1,4),点B(-4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积.(3)在直线AB上是否存在点P,使得△AOP是以OP为腰的等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形;(2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
先化简,再求值:,其中a=+1,b=-1.
已知二次函数的图象经过点(0,3),顶点坐标为(1,4),(1)求这个二次函数的解析式;(2)求图象与x轴交点A、B两点的坐标;(3)图象与y轴交点为点C,求三角形ABC的面积.
【改编】如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.