用如图所示的两个转盘进行“配紫色”游戏(红色与蓝色配成紫色)。请你制作树状图或用列表的方法求出游戏者配紫色的概率.
秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:
分 数 段
频数
频率
60≤x<70
9
a
70≤x<80
36
0.4
80≤x<90
27
b
90≤x≤100
c
0.2
请根据上述统计图表,解答下列问题:
(1)在表中,a= ,b= ,c= ;
(2)补全频数直方图;
(3)根据以上选取的数据,计算七年级学生的平均成绩.
(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?
如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
(1)计算: | 1 - 3 | + 3 tan 30 ∘ - ( 3 - 5 ) 0 - - 1 3 - 1 .
(2)解不等式组 2 x + 1 > 0 ① 2 - x 2 ≥ x + 3 3 ② .
如图1所示,已知:点A(﹣2,﹣1)在双曲线 C: y = a x 上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1,l2于M,N两点.
(1)求双曲线C及直线l2的解析式;
(2)求证: P F 2 ﹣ P F 1 = MN = 4 ;
(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为 AB = x 1 - x 2 2 + y 1 - y 2 2 .
在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.