已知:如图,在△ABC中,AB=AC,∠BAC=,且60°<<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—.(1)用含的代数式表示∠APC,得∠APC =_______________________;(2)求证:∠BAP=∠PCB;(3)求∠PBC的度数.
(·温州卷 第23题 12分)如图,抛物线交轴正半轴于点A,顶点为M,对称轴NB交轴于点B,过点C(2,0)作射线CD交MB于点D(D在轴上方),OE∥CD交MB于点E,EF∥轴交CD于点F,作直线MF。 (1)求点A,M的坐标; (2)当BD为何值时,点F恰好落在抛物线上? (3)当BD=1时,①、求直线MF的解析式,并判断点A是否落在该直线上; ②、延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3= .
(·台州市 第24题 14分)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBM均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究,和的数量关系,并说明理由
(·绍兴市 第24题 14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥轴,与对角线AC、边OC分别交于点E、点F。若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围。
(·丽水市 第24题 12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为(米),与桌面的高度为(米),运行时间为(秒),经多次测试后,得到如下部分数据:
(1)当为何值时,乒乓球达到最大高度? (2)乒乓球落在桌面时,与端点A的水平距离是多少? (3)乒乓球落在桌面上弹起后,与满足 ①用含的代数式表示; ②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求的值。
(·湖州市 第24题 12分)平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=.①求点D的坐标及该抛物线的解析式.②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.