(本小题满分14分)设(1)若在其定义域内为单调递增函数,求实数的取值范围;(2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.
已知f(x) = ax + ,若求的范围.
已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)(Ⅰ)求函数y=f(x)的表达式;(Ⅱ)若x>0,证明:f(x)>;(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围.
已知数列中,,,其前项和满足.令.(Ⅰ)求数列的通项公式;(Ⅱ)若,求证:().
设数列的各项均为正数,若对任意的正整数,都有成等差数列,且成等比数列.(Ⅰ)求证数列是等差数列;(Ⅱ)如果,求数列的前项和。
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.