.如图,四边形为矩形,平面,,平面于点,且点在上.(1)求证:;(2)求四棱锥的体积;(3)设点在线段上,且,试在线段上确定一点,使得平面.
(本小题满分12分)设直线与直线交于点.(1)当直线过点,且与直线垂直时,求直线的方程;(2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
(本小题满分14分)已知函数处取得极值2。(Ⅰ)求函数的表达式;(Ⅱ)当满足什么条件时,函数在区间上单调递增?(Ⅲ)若为图象上任意一点,直线与的图象切于点P,求直线的斜率的取值范围
(本小题满分12分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第个月的利润(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第个月的当月利润率,例如:. (Ⅰ)求; (Ⅱ)求第个月的当月利润率;(Ⅲ)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.
(本小题满分12分)椭圆:的左、右焦点分别为,焦距为2,,过作垂直于椭圆长轴的弦长为3.(Ⅰ)求椭圆的方程;(Ⅱ)若过的直线l交椭圆于两点.并判断是否存在直线l使得的夹角为钝角,若存在,求出l的斜率k的取值范围。
(本小题满分12分)已知函数.(Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.