计算:
(8 分)如图,反比例函数的图象经过点A(,4),直线()与双曲线在第二、四象限分别相交于P,Q 两点,与x轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当时,求△OCD 的面积;(3)连接OQ,是否存在实数b,使得? 若存在,请求出b 的值;若不存在,请说明理由.
已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O 交AB 于点M,交BC 于点N,连接AN,过点C 的切线交AB 的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证:.
如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).
(7 分)“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补全条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“ 通过”(用√表示)或“ 淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.