意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13…,现以这组数中的各个数作为正方形的长度构造正方形,再分别依次从左到右取2个,3个,4个,5个正方形拼成如下矩形并标记为①、②、③、④,相应矩形的周长如下表所示:
若按此规律继续作矩形,则序号为⑩的矩形周长是 。
(本题10分) (1)计算:(-2015)0 ×|-3|-32+; (2)解方程:-= 2.
二次函数的图象经过点(﹣1,4),且与直线相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD. (1)求证:FD是⊙O的一条切线; (2)若AB=10, AC=8,求DF的长.
如图,一楼房AB后有一假山,其坡度为,山坡坡面上E点处有一休息亭,测的假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
如图,在△ABC中,D,E分别是AB,AC的中点,过点E作EF∥AB,交BC于点F. (1)求证:四边形DBFE是平行四边形; (2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?