如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.
某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1200或螺母2000个,一个螺钉要配两个螺母;为了使每天生产的产品正好配套,应该如何安排工人生产 ?
如图,C、D、E为线段AB上三点,且AC=CD,E是BD的中点,DE=AB=2cm,求CE的长.
化简或求值(本题共8分,其中第一小题3分,第二小题5分)(1)化简:2x2−xy − ()(2)先化简,再求值:2(xy2+3y3-x2y)-(-2x2y+y3+xy2 )-4y3,其中x=2,y=-3 .
解方程:(每小题4分,共16分) (1)3-(5-2x)= x+2. (2) (3) (4)
(本题8分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.