如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)在下图中画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)以AB所在的直线为x轴、DE所在的直线为y轴建立直角坐标系xoy,并直接写出在此坐标系下A1B1C1的坐标;(3)求出△ABC的面积。(2) A1( ), B1( ), C1( )(3)S△ABC=_____________________
“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点, … … ,按此规律,求图10、图 n 有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是 6 × 1 = 6 个;图2中黑点个数是 6 × 2 = 12 个:图3中黑点个数是 6 × 3 = 18 个; … … ;所以容易求出图10、图 n 中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有 个圆圈;第 n 个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
某种蔬菜的销售单价 y 1 与销售月份 x 之间的关系如图1所示,成本 y 2 与销售月份 x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益 = 售价 − 成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了 m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出 m = , n = ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知 A 、 B 两位同学都最认可“微信”, C 同学最认可“支付宝”, D 同学最认可“网购”.从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
如图, CE 是 ⊙ O 的直径, BC 切 ⊙ O 于点 C ,连接 OB ,作 ED / / OB 交 ⊙ O 于点 D , BD 的延长线与 CE 的延长线交于点 A .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 ⊙ O 的半径为1, tan ∠ DEO = 2 ,求 AE 的长.
如图,在平面直角坐标系 xOy 中,点 A 是反比例函数 y = m 3 − m 2 x ( x > 0 , m > 1 ) 图象上一点,点 A 的横坐标为 m ,点 B ( 0 , − m ) 是 y 轴负半轴上的一点,连接 AB , AC ⊥ AB ,交 y 轴于点 C ,延长 CA 到点 D ,使得 AD = AC ,过点 A 作 AE 平行于 x 轴,过点 D 作 y 轴平行线交 AE 于点 E .
(1)当 m = 3 时,求点 A 的坐标;
(2) DE = ,设点 D 的坐标为 ( x , y ) ,求 y 关于 x 的函数关系式和自变量的取值范围;
(3)连接 BD ,过点 A 作 BD 的平行线,与(2)中的函数图象交于点 F ,当 m 为何值时,以 A 、 B 、 D 、 F 为顶点的四边形是平行四边形?