解方程:
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.(1)求证:△AFO≌△CEB;(2)若EB=5cm,CD=cm,设OE=x,求x值及阴影部分的面积.
如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧上一点,连接 BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=6cm,求图中阴影部分的面积.
如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0)、A(﹣2,3)、B(﹣4,2),将△AOB绕点O逆时针旋转90°后,点A、O、B分别落在点A'、O'、B'处.(1)在所给的直角坐标系xOy中画出旋转后的△A'O'B';(2)求点B旋转到点B'所经过的弧形路线的长.
如图,在正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点(小正方形的顶点)上,将△ABC绕点A按逆时针方向旋转90°得到△AB1C1.(1)在正方形网格中,画出△AB1C1;(2)直接写出旋转过程中动点B所经过的路径长.
如图,在8×11的方格纸中,△ABC的顶点均在小正方形的顶点处.(1)画出△ABC绕点A顺时针方向旋转90°得到的△A′B′C′;(2)求点B运动到点B′所经过的路径的长度.