甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(Ⅰ)求的值;(Ⅱ)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望.
(本小题满分14分)如图5,已知平面,平面,△为等边三角形,,为的中点.(1)求证:平面;(2)求证:平面平面;(3)求直线和平面所成角的正弦值.
.(本小题满分12分)第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,(1)恰有3次射击成绩为10环的概率;(2)至少有3次射击成绩为10环的概率;(3)记“射击成绩为10环的次数”为,求.(结果用分数表示)
.(本小题满分12分)已知平面上三点,,.(1)若(O为坐标原点),求向量与夹角的大小;(2)若,求的值.
(本小题满分14分)已知定义域为的函数同时满足以下三个条件:① 对任意的,总有≥0; ②;③若且,则有成立,并且称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值;(2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,且 ,求证:
(本小题满分14分)如图,直线与椭圆交于两点,记的面积为.(I)求在,的条件下,的最大值;(II)当,时,求直线的方程.