(本小题满分10分)选修4-1:几何证明选讲已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交半圆于点,.(Ⅰ)求证:平分;(Ⅱ)求的长.
抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点. (1)若点为中点,求直线的方程; (2)设抛物线的焦点为,当时,求的面积.
已知四棱锥,面,∥,,,,,为上一点,是平面与的交点. (1)求证:∥; (2)求证:面; (3)求与面所成角的正弦值.
在数列中,. (1)求; (2)设,求证:为等比数列; (3)求的前项积.
在中,角所对的边分别为,且成等比数列. (1)若,,求的值; (2)求角的取值范围.
求以椭圆的焦点为焦点,且过点的双曲线的标准方程.