小虎一家利用元旦三天驾车到某景点旅游,小汽车出发前油箱有油36L,匀速行驶若干小时后,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答下列问题:(1)求油箱余油量Q与行驶时间t之间的函数关系式;(2)如果出发地距景点200km,车速为80km/h,要到达景点,油箱中的油是否够用?请说明理由.
在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N. (1)如图1,当点M与点C重合,求证:DF=MN; (2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以cm/s速度沿AC向点C运动,运动时间为t(t>0); ①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由. ②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.
如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长交边AD于点F,交CD的延长线于点G. (1)求证:△APB≌△APD; (2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y. ①求y与x的函数关系式; ②当x=6时,求线段FG的长.
关于的方程有两个不相等的实数根. (1)求的取值范围. (2)是否存在实数,使方程的两个实数根的倒数和等于0?若存在,求出的值;若不存在,说明理由.
已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G. (1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证; (2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,请直接写出的值.
小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m的值; (2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.