解方程:
如图,反比例函数的图象与过点 A ( 0 , - 1 ) , B ( 4 , 1 ) 的直线交于点 B 和 C .
(1)求直线 AB 和反比例函数的解析式;
(2)已知点 D ( - 1 , 0 ) ,直线 CD 与反比例函数图象在第一象限的交点为 E ,直接写出点 E 的坐标,并求 ΔBCE 的面积.
已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0 .
(1)求证:无论 k 取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为 x 1 , x 2 ,且 k 与 x 1 x 2 都为整数,求 k 所有可能的值.
某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率;
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生
自选项目
长跑
掷实心球
小红
95
90
小强
①补全条形统计图.
②如果体育中考按自选项目占 50 % 、长跑占 30 % 、掷实心球占 20 % 计算成绩(百分制),分别计算小红和小强的体育中考成绩.
如图, ∠ BAC = 90 ° , AD 是 ∠ BAC 内部一条射线,若 AB = AC , BE ⊥ AD 于点 E , CF ⊥ AD 于点 F .求证: AF = BE .
先化简,再求值: ( 2 x + 1 ) ( 2 x - 1 ) - ( 2 x - 3 ) 2 ,其中 x = - 1 .