(本小题满分12分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球(Ⅰ)求取出的3个球中至少有一个红球的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.
(本小题满分15分) 某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。 (Ⅰ)试写出关于的函数关系式; (Ⅱ)当=640米时,需新建多少个桥墩才能使最小?
(本小题满分15分) 已知函数,常数. (1)当时,解不等式; (2)讨论函数的奇偶性,并说明理由.
(本题满分14分) 已知mÎR,设P:不等式;Q:函数在(-¥,+¥)上有极值.求使P正确且Q正确的m的取值范围.
(本小题满分14分) 已知集合,集合,若,求实数的取值范围。
已知圆过点且与圆:关于直线对称,作斜率为的直线与圆交于两点,且点在直线的左上方。 (1)求圆C的方程。 (2)证明:△的内切圆的圆心在定直线上。 (3)若∠,求△的面积。