如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点) (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长.
先化简,再求值:,其中x=3.
如图,抛物线的对称轴是直线x=,与x轴交于点A、B两点,与y轴交于点C,并且点A的坐标为(—1,0). (1)求抛物线的解析式; (2)过点C作CD//x轴交抛物线于点D,连接AD交y轴于点E,连接AC,设△AEC的面积为S1, △DEC的面积为S2,求S1:S2的值; (3)点F坐标为(6,0),连接D,在(2)的条件下,点P从点E出发,以每秒3个单位长的速度沿E→C→D→F匀速运动;点Q从点F出发,以每秒2个单位长的速度沿F→A匀速运动,当其中一点到达终点时,另外一点也随之停止运动.若点P、Q同时出发,设运动时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是直角三角形?请直接写出所有符合条件的t值..
正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF. (1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为: ; (2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转900,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论; (3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系: .
某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:
(1)直接写出y与x的函数关系式: . (2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大? (3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?