已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值范围;若不存在,说明理由;(Ⅲ)如果对,总有,则称是的凸函数,如果对,总有,则称是的凹函数.当时,利用定义分析的凹凸性,并加以证明。
(本题6分)已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的,求这个圆台的侧面积.
(本题6分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V; (2)求该几何体的侧面积S。
如图所示,在四面体中,,,两两互相垂直,且. (1)求证:平面平面; (2)求二面角的大小; (3)若直线与平面所成的角为,求线段的长度.
四棱锥中,侧面⊥底面,底面是边长为的正方形,又,,分别是的中点. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
如图,三棱柱中,侧面底面,,且,O为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与平面所成角的正弦值