已知函数.(Ⅰ)当时,求函数的单调区间;(Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值范围;若不存在,说明理由;(Ⅲ)如果对,总有,则称是的凸函数,如果对,总有,则称是的凹函数.当时,利用定义分析的凹凸性,并加以证明。
已知z、w为复数,(1+3i)z为实数,w=.
(13分) (1)写出a2, a3, a4的值,并猜想数列{an}的通项公式;(2)用数学归纳法证明你的结论;
(本小题满分12分)已知=(2,1),=(1,7),=(5,1).设M是直线OP上的一点(其中O为坐标原点),当取最小值时:(1)求;(2)设∠AMB=θ,求cosθ的值.
(本小题满分12分)已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).(1)若||=||,求角α的值;(2)若·=-1,求的值.
(本小题满分12分)已知函数y=cos2x+sinxcosx+1,x∈R.(1)求它的振幅、周期和初相;(2)用五点法作出它的简图;(3)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到的?