(本小题满分12分)在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于B,构成一个三棱锥(如图所示). (Ⅰ)在三棱锥上标注出、点,并判别MN与平面AEF的位置关系,并给出证明;(Ⅱ)是线段上一点,且, 问是否存在点使得,若存在,求出的值;若不存在,请说明理由;(Ⅲ)求多面体E-AFNM的体积.
(本小题满分14分) 设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5. 三人各向目标射击一次,求至少有一人命中目标的概率; 三人各向目标射击一次,求恰有两人命中目标的概率; (3)若甲单独向目标射击三次,求他恰好命中两次的概率.
(本小题满分14分) 已知数列{}是首项为等于1且公比不等于1的等比数列,是其前项的和,成等差数列. (1) 求和 ; (2) 证明 12成等比数列
(本小题满分14分) 已知 (1)求的值 (2)求的值
(本小题满分14分) 某造船公司年最高造船量是20艘. 已知造船x艘的产值函数为R(x)="3700x" + 45x2 – 10x3(单位:万元), 成本函数为C (x) =" 460x" + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) =" f" (x+1) – f (x). 求: (1) 利润函数P(x) 及边际利润函数MP(x); (2) 年造船量安排多少艘时, 可使公司造船的年利润最大? (3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
(本小题满分14分) 设函数,试求函数f(x)存在最小值的充要条件,并求出相应的最小值.