学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?
如图, O,R 是同一水平线上的两点,无人机从 O 点竖直上升到 A 点时,测得 A 到 R 点的距离为 40m , R 点的俯角为 24.2° ,无人机继续竖直上升到 B 点,测得 R 点的俯角为 36.9° .求无人机从 A 点到 B 点的上升高度 AB (精确到 0.1m ).
参考数据: sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75 .
【观察思考】
【规律发现】
请用含 n 的式子填空:
(1)第 n 个图案中“◎”的个数为_____;
(2)第1个图案中“★”的个数可表示为 1 × 2 2 ,第 2 个图案中“★”的个数可表示为 2 × 3 2 ,第 3 个图案中“★”的个数可表示为 3 × 4 2 ,第 4 个图案中“★”的个数可表示为 4 × 5 2 ,……,第 n 个图案中“★”的个数可表示为_____.
【规律应用】
(3)结合图案中“★”的排列方式及上述规律,求正整数 n ,使得连续的正整数之和 1+2+3+……+n 等于第 n 个图案中“◎”的个数的 2 倍.
根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨 10% ,乙地降价 5 元.已知销售单价调整前甲地比乙地少 10 元,调整后甲地比乙地少 1 元,求调整前甲、乙两地该商品的销售单价.
先化简,再求值: x2 + 2 x + 1 x + 1 ,其中 x= 2 -1 .
综合运用
如图1,在平面直角坐标系中,正方形 OABC 的顶点 A 在 x 轴的正半轴上.如图2,将正方形 OABC 绕点 O 逆时针旋转,旋转角为 α(0°<α<45°) , AB 交直线 y=x 于点 E , BC 交 y 轴于点 F .
(1)当旋转角 ∠COF 为多少度时, OE=OF ;(直接写出结果,不要求写解答过程)
(2)若点 A(4,3) ,求 FC 的长;
(3)如图3,对角线 AC 交 y 轴于点 M ,交直线 y=x 于点 N ,连接 FN .将 △OFN 与 △OCF 的面积分别记为 S 1 与 S 2 .设 S= S 1 ﹣ S 2 , AN=n ,求 S 关于 n 的函数表达式.