(本小题满分12分)已知函数(,实数,为常数).(Ⅰ)若,求在处的切线方程;(Ⅱ)若,讨论函数的单调性.
设是数列的前项和,,. ⑴求的通项; ⑵设,求数列的前项和.
已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,且直线的斜率都存在(记为),则是与点位置无关的定值。试写出双曲线的类似性质,并加以证明。
求和:
求数列的前项和.
⑴ 求和:; ⑵ 求和:; ⑶ 求和:.