已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,且直线的斜率都存在(记为),则是与点位置无关的定值。试写出双曲线的类似性质,并加以证明。
已知函数的定义域是,函数在上的值域为,全集为,且求实数的取值范围。
(1)画出函数的图象并指出单调区间; (2)利用图象讨论: 关于方程(为常数)解的个数?
已知椭圆的方程为双曲线的两条渐近线为和,过椭圆的右焦点作直线,使得于点,又与交于点,与椭圆的两个交点从上到下依次为(如图). (1)当直线的倾斜角为,双曲线的焦距为8时,求椭圆的方程; (2)设,证明:为常数.
已知定点(1,0)和定圆B:动圆P和定圆B相切并过A点, (1)求动圆P的圆心P的轨迹C的方程。 (2)设Q是轨迹C上任意一点,求的最大值。
根据我国汽车制造的现实情况,一般卡车高3 m,宽1.6 m.现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m的距离行驶.已知拱口AB宽恰好是拱高OC的4倍,若拱宽为a m,求能使卡车安全通过的a的最小整数值.