某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,决出胜负即停止比赛。按以往的比赛经验,每局比赛中,甲胜乙的概率为。(1)求比赛三局甲获胜的概率;(2)求甲获胜的概率;(3)设比赛的局数为X,求X的分布列和数学期望。
已知函数在上是减函数,在上是增函数,函数在上有三个零点,且1是其中一个零点. (1)求的值; (2)求的取值范围; (3)试探究直线与函数的图像交点个数的情况,并说明理由.
.已知数列是正数组成的数列,其前n项和为,对于一切均有与2的等差中项等于与2的等比中项。 (1)计算并由此猜想的通项公式; (2)用数学归纳法证明(1)中你的猜想。
⊙O1和⊙O2的极坐标方程分别为 (1)⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1和⊙O2交点的直线的直角坐标方程。
已知正数满足:. (Ⅰ) 求证:;(Ⅱ)求的最大值.( )
已知直线L过点P(2,0),斜率为相交于A,B两点,设线段AB的中点为M,求: (1)P,M两点间的距离/PM/: (2)M点的坐标; (3)线段AB的长;