如图,∠C=90°,∠CAE=∠ABC,AC=2,BC=3.(1)判断AE与⊙O的位置关系,并说明理由;(2)求OB的长;
如图所示,一艘渔船正以30海里/时的速度由西向东追赶鱼群,自A处经半小时到达B处,在A处看见小岛C在船的北偏东60°的方向上,在B处看见小岛C在船的北偏东30°的方向上,已知以小岛C为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,则这艘船继续向东追赶鱼群,是否有进入危险区域的可能?
已知在△ABC中,∠BAC=90°;分别以AB,BC为边作正方形ABDE和正方形BCFG,连接DC,GA交于点P,求证:PD⊥PG.
某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?
用适当的方法解下列方程(1)2x2+x﹣1=0(2)用配方法解方程:x2﹣4x+1=0.
如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动. (1)用含有t的代数式表示PE= ; (2)探究:当t为何值时,四边形PQBE为梯形? (3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.