如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动. (1)用含有t的代数式表示PE= ; (2)探究:当t为何值时,四边形PQBE为梯形? (3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为何值时,△BCP为等腰三角形?
如图,居民楼与马路是平行的,在一楼的点A处测得它到马路的距离为9m,已知在距离载重汽车41m处就可受到噪声影响.(1)试求在马路上以4m/s速度行驶的载重汽车,能给一楼A处的居民带来多长时间的噪音影响?(2)若时间超过25秒,则此路禁止该车通行,你认为载重汽车可以在这条路上通行吗?
如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,(1)求证:△BCE≌△DCF;(2)若AB=21,AD=9,AC=17,求CF的长.
已知直线及其两侧两点A、B,如图.(1)在直线上求一点P,使PA=PB;(2)在直线上求一点Q,使平分∠AQB. (以上两小题保留作图痕迹,标出必要的字母,不要求写作法.)
如图,在长度为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)四边形ACBB′的面积为 ;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为 .