顶点在坐标原点,开口向上的抛物线经过点,过点作抛物线的切线交x轴于点B1,过点B1作x轴的垂线交抛物线于点A1,过点A1作抛物线的切线交x轴于点B2,…,过点作抛物线的切线交x轴于点.(1)求数列{ xn },{ yn}的通项公式;(2)设,数列{ an}的前n项和为Tn.求证:;(3)设,若对于任意正整数n,不等式…≥成立,求正数a的取值范围.
数列{}的前项和为,是和的等差中项,等差数列{}满足,. (1)求数列{},{}的通项公式; (2)若,求数列的前项和.
在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BC、的中点. (1)求证:; (2)求直线与平面所成角的正切值.
已知函数. (1)求函数的最小正周期和单调递减区间; (2)设△的内角的对边分别为且,,若,求的值.
已知椭圆:()的焦距为,且过点. (1)求椭圆的方程和离心率; (2)设()为椭圆上一点,过点作轴的垂线,垂足为.取点,连 结,过点作的垂线交轴于点,点是点关于轴的对称点.试判断直线与椭圆的位置关系,并证明你的结论.
设函数,且.曲线在点 处的切线的斜率为. (1)求的值; (2)若存在,使得,求的取值范围.