顶点在坐标原点,开口向上的抛物线经过点,过点作抛物线的切线交x轴于点B1,过点B1作x轴的垂线交抛物线于点A1,过点A1作抛物线的切线交x轴于点B2,…,过点作抛物线的切线交x轴于点.(1)求数列{ xn },{ yn}的通项公式;(2)设,数列{ an}的前n项和为Tn.求证:;(3)设,若对于任意正整数n,不等式…≥成立,求正数a的取值范围.
(本小题满分12分) 如图,为圆的直径,点、在圆上,,矩形所在平面和圆所在的平面互相垂直. (Ⅰ)求证:AD∥平面BCF; (Ⅱ)求证:平面平面;
(本小题满分13分) 如图,已知椭圆:的离心率为,左焦点为,过点且斜率为的直线交椭圆于两点. (Ⅰ)求椭圆的方程; (Ⅱ)求的取值范围; (Ⅲ)在轴上,是否存在定点,使恒为定值?若存在,求出点的坐标和这个定值;若不存在,说明理由.
(本小题满分12分) 如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且. (1)求点到平面的距离; (2)为线段上的一个动点,当线段的 长为多少时,与平面所成的角为?
(本小题满分14分) 设、分别是椭圆:的左右焦点。 (1)设椭圆上点到两点、距离和等于,写出椭圆的方程和焦点坐标; (2)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程; (3)设点是椭圆上的任意一点,过原点的直线与椭圆相交于,两点,当直线,的斜率都存在,并记为,,试探究的值是否与点及直线有关.
(本小题满10分) 设函数,其中. (1)若,求在的最小值; (2)如果在定义域内既有极大值又有极小值,求实数的取值范围;